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Additivity models have been widely employed to approximate unknown molecular properties based on
previously measured or calculated data for similar molecules. This paper proposes an improved formulation
of additivity, which is based on high-dimensional model representation (HDMR). HDMR is a general function-
mapping technique that expresses the output of a multivariate system in terms of a hierarchy of cooperative
effects among its input variables. HDMR rests on the general observation that, for many physical systems,
only relatively low-order input variable cooperativity is significant. A molecule is expressed as a multivariate
system by defining binary-valued input variables corresponding to the presence or absence of a chemical
bond, with the molecular property as the output. Conventional additivity decomposes a molecular property
into contributions from nonoverlapping subcomponents of fixed size. On the other hand, HDMR decomposes
a molecular property into the exact contributions from the full hierarchy of its variable-sized subcomponents
and contains additivity as a special case. The complete hierarchical structure of HDMR can in many cases
lead to a much more accurate estimate than conventional additivity. Also, when full group additivity is not
possible, HDMR gives an expression for a lower-order approximation for the missing group additivity value,
greatly expanding the scope of HDMR compared to additivity. The component terms in an HDMR
approximation have well-defined physical significance. Moreover, HDMR gives an exact expression for the
truncation error in any given HDMR approximation, also with a well-defined physical significance. The HDMR
model is tested for the enthalpy of formation of a broad range of organic molecules, and its advantages over
additivity are illustrated.

1. Introduction

The conceptual reduction of a molecule to a sum of its
components is central to much of chemistry. At the simplest
level, a chemical formula reduces a molecule to an algebraic
sum of its atoms, and a two-dimensional structural representation
reduces a molecule to a geometric sum of its atoms and bonds.
Extending this idea, one can numerically express a molecular
property as a sum of contributions from molecular subcompo-
nents. Many empirical models are built upon this concept and
are known as additivity models.1 These models approximate
the property of a given molecule by taking combinations of
properties of smaller molecules which represent fixed-size,
nonoverlapping substructural fragments of the molecule under
consideration. The general assumption of additivity is that the
property being modeled is dominated by local interactions
among the molecular subcomponents. Many properties have
been modeled by additivity, including enthalpy, entropy, heat
capacity,2 boiling point,3 liquid state thermal conductivity,4 and
critical temperature and pressure,5 among others.

The utility of additivity models lies in their simplicity
compared to performing a new experimental measurement or
theoretical calculation. Some applications require knowledge
of a vast amount of molecular property data and necessitate a
general interpolation/extrapolation method that is extremely fast.
One example of such an application is an optimization problem
in chemical engineering, where a molecule with a predetermined
molecular property is desired. In other applications, the com-
plexity of calculating a molecular property scales with the size
of the molecule being studied. In ab initio quantum chemistry,
for example, detailed electron correlation methods become

prohibitive for large molecules. In this case it is preferable to
compute full ab initio calculations on smaller fragments and to
approximate the molecular property as some function of the
properties of the smaller fragments. An elegant and systematic
approach to this type of quantum chemistry was recently
proposed by Deev and Collins.6

Additivity models have been formulated in various ways, but
they all share a common theoretical framework. Cox and
Pilcher1 show that the major models of Benson, Laidler, and
Allen are mathematically equivalent. The theory of additivity
is well formalized by Benson and co-workers,2,7,8who represent
the additivity approximation in terms of the disproportionation
reaction:

Here R and S are atoms and N is a variable number of atoms.
The assumption of additivity is that the property change of the
disproportionation reaction is negligible for sufficiently large
N, meaning that atoms R and S separated by N atoms have no
significant effect on one another. If N vanishes, eq 1 implies
the additivity of atomic properties; if N is one atom, the
additivity of diatomics is implied, etc.2 The most common order
of approximation is “group additivity” (GA), where N is two
atoms. For example, using GA, a propertyΦ of butane may be
written as a sum of contributions from its constituent “groups”,
which are two end groups C-(C)(H)3 (i.e., a carbon bonded to
one other carbon and three hydrogens), and two middle groups
C-(C)2(H)2 (i.e., a carbon bonded to two other carbons and
two hydrogens). The GA expression of the property is then

RNR + SNSf 2RNS (1)
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By setting up similar equations for similar molecules of
known Φ, one can construct a solvable set of linear equations
to calculate the group contributions C-(C)(H)3 and C-(C)2(H)2.
These calculated group contributions can then be used to predict
the properties of larger molecules made up of these groups.
Oftentimes the problem of solving for a set of group contribu-
tions is overdetermined, in which case a regression analysis may
be invoked to incorporate all available input data.7

It is important to note that group additivity is used in the
literature to loosely refer to a more elaborate system of
approximations that include many extensions to the formal
theory described above.7 In particular, R and S in eq 1 do not
refer to generic atoms, but rather to atoms in a particular
environment (some examples include primary, secondary, and
tertiary carbons, carbons in a benzene ring, doubly or triply
bonded carbons, etc.). Furthermore, there are a large number
of “correction terms” designed to account for such effects as
tertiary, gauche, and ring interactions. For the remainder of this
paper, “group additivity” will refer to the formal theory implied
by the disproportionation reaction, unless indicated otherwise.

Although the additivity approach has proven its utility in
many applications, it still suffers from some conceptual and
practical limitations. Considering the diversity of factors that
can contribute to a molecular property, which include conjuga-
tion, steric crowding, rings, hydrogen bonding, etc., it is apparent
that the assumption of group additivity is only applicable for a
special subset of molecules. In fact, there exists a well-known
hierarchy of intramolecular phenomena that may contribute to
a molecular property, in which the local interactions among
“groups” are only among the lowest order effects. Consequently,
it is natural to use an additive type approximation that accounts
for the full hierarchical progression of intramolecular phenom-
ena. The importance of these systematic higher-order effects is
evidenced by the proliferation of “correction terms” in the GA
literature,7 which are not accounted for by the additive formula-
tion. Also, the domain of GA is dictated by the availability of
the specific input data needed to derive group values, and for
many molecules, group values are simply not available. In these
cases, it is desirable to perform a lower-order approximation
only where necessary, and to retain a GA level or higher
approximation for the remainder of the molecule. This procedure
is also outside of the scope of the additive formulation. Finally,
the component additive terms generally do not have an easily
understandable physical significance, and there is no well-
defined expression for the error of the additive approximation.

This paper proposes an improved theoretical framework for
the estimation of molecular properties based on high-dimen-
sional model representation (HDMR)9,10 that contains additivity
as a special case, and which addresses the aforementioned
limitations of simple additivity. HDMR is a general function
mapping technique that expresses a multivariate system in terms
of the hierarchical cooperative effects among its variables,
starting with each variable acting independently, followed by
variables acting in pairs, groups of three, etc. Each level of
cooperativity yields exact effects to its particular order. The
HDMR input f output function maps have been used to
accurately model a wide variety of physical phenomena,
including chemical kinetic systems,11 quantum dynamic phe-
nomena,12 and semiconductor material properties.13 By defining
a molecule as a multivariate system in which its bonds are the
input variables and its property is the output, the task of
molecular property modeling becomes a high-dimensional

problem that may be well-described by HDMR. HDMR
accounts for the full hierarchy of subcomponent contributions
to the molecular property and has a clear physical interpretation.
For example, the effect of ann-membered ring is precisely
defined as annth-order HDMR effect. The formulation of
HDMR naturally allows for a mixed order approximation, so
structures that are expected to require a higher order treatment
may be easily incorporated into an otherwise low-order model.
Furthermore, the error in any HDMR approximation has a well-
defined expression, and a clear physical meaning.

We propose two types of HDMR for the estimation of
molecular properties. Random-sampling HDMR (RS-HDMR)
derives a multivariate function from a random selection of
experimental data.14 Cut-HDMR expresses a function with
respect to a particular reference point in the input variable space,
as a collection of lines, planes, subvolumes, etc. that cut through
the reference point. The choice between RS-HDMR and cut-
HDMR will depend in part on the data available for the property
being modeled. For the property under consideration in this
paper, enthalpy of formation, the experimental data for the small
molecules is thorough, so the focus will be on cut-HDMR. An
advantage of cut-HDMR is that the physical significance of the
model is precisely defined in terms of specific chemical
components contributing to the property value.

The technique of expressing a molecular property as a
hierarchical sum of subcomponent contributions appears at least
as early as 1947 when Platt15 described a model of alkane molar
refractivity, molar volume, heat of formation, and boiling point.
In the Platt model, the properties are decomposed into contribu-
tions from bonds, and the bond contribution terms are modified
by adjacent atoms, atoms once removed, atoms twice removed,
etc. The procedure of decomposing a group contribution into
lower-order terms was employed by Pedley, Naylor, and Kirby16

to allow for a mixed-order prediction. HDMR offers a fully
unified framework for these methods.

This paper is structured as follows. The general foundations
of HDMR for molecular properties are introduced in section 2.
In section 3 we present the results of a comprehensive test of
the HDMR for enthalpy of formation. HDMR is then compared
with additivity in section 4. We first demonstrate that HDMR
contains additivity as a special case and proceed to illustrate
the advantages of HDMR over additivity.

2. High-Dimensional Model Representation

2.1. Formulation. HDMR has a generic structure that breaks
down a multivariate system in terms of the cooperative effects
among its variables.9,10 First-order HDMR maps the effect of
each variable acting independently, second-order HDMR maps
the cooperative effect of pairs of variables, etc. For a full
mapping of a system to all orders, the complexity of sampling
the multivariate space would scale exponentially with the
number of variables. However, for well-defined physical
systems, typically only low-order correlations among the input
variables are significant with respect to the output. Therefore,
the inputf output behavior of a multivariate system often can
be accurately expressed as a low-order truncated HDMR
expansion, with sampling complexity scaling only polynomially
with the number of variables.

For a system ofn input variablesx1, x2, ..., xn and outputg,
a complete HDMR expansion maps the inputf output behavior
of the system described byg(x1,x2,...,xn) as a hierarchical sum
of terms from zeroth tonth order in the following form:

2[C-(C)(H)3] + 2[C-(C)2(H)2] ) ΦH3CCH2CH2CH3
(2)
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In this expressionf0 is a constant, the termfi(xi) describes the
effect of variablexi acting independently, the termfij(xi, xj)
describes the effect of variablesxi andxj acting cooperatively,
etc. Cut-HDMR definesf0 as the system output at a reference
point xj in the input space. The choice of reference point is
arbitrary, but in many cases a logical choice can be made on
physical grounds. When taken to convergence, the cut-HDMR
formulation is independent of the choice ofxj. Each term in the
HDMR expansion represents the unique contribution from its
particular order of variable cooperativity, and the first few
functions have the following form:

The notationxji means that all variables are set to their reference
values except forxi, xjij means that all variables are set to their
reference values except forxi andxj, etc.

Because only low-order effects (i.e., up to orderl wherel ,
n) are expected to significantly influence the output, knowledge
of a small set of low-order contributions is often sufficient to
accurately represent a function in high dimensions with many
variables. By observing the behavior of the various low-order
functions, one can identify regions of sensitivity in the input
space and reduce the HDMR expansion to include only terms
that are significant with respect to the output. Moreover, the
behavior of the HDMR function terms often leads to insight
into the nature of the model system.10 The validity of the HDMR
hypothesis that many physical systems are dominated by low-
order effects is supported by successful applications to a diverse
set of problems.9-14,17,18

2.2. HDMR of Molecular Properties. The hierarchical
structure of HDMR suggests its suitability for the modeling of
molecular properties, considering a molecule as naturally broken
into its subcomponent fragments. With HDMR one is able to
mathematically express this notion through the construction of
a hierarchical map of a molecular property in terms of
contributions from its atoms, diatomic subcomponents, triatom-
ics, etc. up to the fully constructed molecule. Consistent with
the HDMR hypothesis, it will be shown that the enthalpy of
formation is largely determined by the low-order effects of a
small number of subcomponents. That is, one can accurately
represent the enthalpy of formation of a large set of molecules
in terms of a small subset of molecular subcomponents.

The input variables are defined as a chosen set of bonds in
a molecule, and the output as the molecular property. The
variables can take on one of two discrete values, either “bonded”
(x ) 1) or “nonbonded” (x ) 0). When a variable is “bonded”,
the corresponding bond is intact, and when a variable is
“nonbonded”, the bond is dissociated. Because this dissociation
would generally result in two unstable species, we define the
nonbonded species to be capped with a chosen saturating agent
to fill the vacated valencies, and those added saturating agent
atoms are subtracted from the overall sum in such a way as to
balance the stoichiometry. To illustrate the meaning of the
variables, consider the variablex associated with the C-O bond

of methanol, with hydrogen as the saturating agent. This system
can take on one of the following two states:

whereΦ indicates the known property values of the molecules
in the subscripts. In theg(x)0) state, hydrogen atoms are added
to the dissociated fragments-CH3 and-OH to form CH4 and
H2O, and the hydrogen molecule is subtracted to remain
stoichiometrically consistent. Because the variables take on only
the discrete binary values of 0 and 1, the role of HDMR in
describing molecular properties is to decompose the molecular
property into its subcomponent contributions in eq 3. This
treatment of bonds as either present or absent amounts to
expressing a molecular structure in terms of its connectivity.
By characterizing a molecule in this way, the nonbonded
interaction of atoms through space, such as in sterically crowded
clusters, is only captured at high orders. However, a modified
definition of the variables could directly include such nonbonded
effects, although this treatment is not exploited in the present
work. Another consequence of a connectivity representation is
the lack of cis-trans and optical isomer specificity. It is possible
to apply an extra variable index to distinguish these isomers,
but for some properties this specificity may be unimportant.
For example, in the case of enthalpy of formation, optical
isomerization is generally not specified in reporting experimental
enthalpy values. The bonds defined as variables, as well as the
saturating agent, may be flexibly chosen. However, in general,
it is natural to define all bonds between non-hydrogen atoms
as variables, and the saturating agent as hydrogen.

The system as a whole is the entire molecule fragmented to
the extent prescribed by the variable values, and the output is
the property value of the associated collection of fragments.
For example, if all variables are equal to 1, the molecule is
fully assembled. If all but one variable are equal to 1, the
molecule is broken into two fragments at the bondi for which
xi ) 0. If all variables are equal to 0 the molecule is fully
fragmented. The reference termf0 is naturally defined as the
molecule in this fully fragmented state (i.e.,xi ) 0 for all i). In
this way the HDMR expansion progresses from the fragmented
to the fully assembled representation of the molecule, which
generally leads to a progressively more accurate representation
of the molecular property. The first-order terms will include all
groups bonded in pairs, the second-order terms will include all
sets of three groups bonded, and so on to the fully assembled
molecule. Only those bonds that are present in the fully
constructed molecule will be formed to generate the fragments.
This hierarchy will generally not need to be taken to the level
of xi ) 1 for all i to accurately represent the property of the
original molecule, as high-order cooperative terms are expected
to be negligible.

To illustrate the application of HDMR to molecular properties,
consider the molecule 1-fluoro-2-chloropropane shown in Figure
1. All bonds between non-hydrogen atoms are defined as
variables, and the saturating agent is hydrogen. The first few
terms of the HDMR expansion for this molecule are as follows:

g(x1,x2,...,xn) ≡ f0 +∑
i)1

n

fi(xi) + ∑
i< j

n

fij(xi,xj) + ... +

f12....n(x1,x2,...,xn) (3)

f0 ) g(xj)

fi(xi) ) g(xji,xi) - f0

fij(xi,xj) ) g(xjij,xi,xj) - fi(xi) - fj(xj) - f0

l (4)

Figure 1. 1-Fluoro-2-chloropropane with labeled variable indices.

g(x)1) ) ΦCH3OH

g(x)0) ) ΦCH4
+ ΦH2O

- ΦH2
(5)
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The first-order termf1 represents the unique effect of the
fragment FCH3, formed by bond 1, and the termf2 represents
the unique effect of the fragment CH3CH3, formed by bond 2.
The second-order termf12 represents the unique effect of the
fragment FCH2CH3, formed by bonds 1 and 2 acting together.
In the HDMR of molecular properties, variable cooperativity
can be interpreted as bonds acting cooperatively to form a unique
molecular fragment. Higher-order terms for subcomponents of
any size are treated in analogy with those in eq 6, and represent
the unique effect of their associated collection of atoms and
bonds acting cooperatively upon the output. Note that some
terms might represent noncontiguously bonded fragments, such
asf13. However, such terms are already fully expressed as two
first-order terms, and from the defining relations in eq 4, the
lower-order terms are subtracted from each higher-order term.
Therefore the termf13 will be zero, as there is no direct
cooperativity between the fragments FCH3 and ClCH3 formed
by bonds 1 and 3. This is true in general for noncontiguous
terms. In contrast, a term likef123will likely be small on physical
grounds but will not be zero because bonds 1, 2, and 3 form a
contiguous molecular fragment FCH2CH2Cl with a correspond-
ing unique cooperative impact.

The individual HDMR terms can be included in any
combination, as each term represents the unique contribution
from its particular order. This feature of the HDMR allows for
the flexible inclusion of terms that are physically relevant and
quantitatively significant. Also, because the HDMR terms
correspond to stoichiometrically balanced summations, they are
each described by the property change of an associated chemical
reaction.

Higher-order effects of rings or sterically crowded subcom-
ponents can be incorporated by taking the relevant higher-order
fragment to local convergence, meaning the HDMR terms for
all fragments containing the special structure are included. For
example, in the case of methylbenzene, one would include all
first through sixth-order terms associated with the isolated
benzene ring, along with the standard low-order terms for
fragments containing the methyl substituent. This treatment only
requires one additional data point for each higher-order fragment
(the property value of that higher-order fragment), because when
taken to convergence the HDMR expansion is by construction
the exact property value. That is, the sum of all terms associated
with an isolated benzene ring is by definition the exact property
value of benzene. This treatment is analogous to the “difference
method” sometimes used in the context of additivity.7 This work
treats higher-order effects in this way.

Another way to treat special higher-order structural effects
is to define the relevant structure (e.g., the ring or sterically

crowded fragment) as an irreducible structural entity. This may
be achieved by excluding the internal bonds of the structure in
the definition of the variables. Then even at zeroth-order, the
special group would not be reduced to smaller subcomponents,
and the previously high-order effect becomes a zeroth-order
effect. In the case of methylbenzene, the benzene ring may be
treated as an irreducible structure, and the benzene-methyl bond
becomes the only variable for the molecule. This system could
then take on one of the following two states:

where Ph is a phenyl group. Because both states incorporate
the experimental property value of benzene, the previously high-
order effect of the benzene ring becomes a zeroth-order effect.
In all molecules containing benzene, the benzene ring can
thereby naturally be incorporated into all subcomponent frag-
mentations of the molecule. This treatment of high-order effects
requires more experimental data of large molecules and was
not tested in this work.

As for additivity, the HDMR of molecular properties should
ideally be applied under a consistent set of conditions such as
temperature, pressure, phase, solvent, and concentration. Be-
cause no interaction is assumed between nonbonded subcom-
ponents, the model is expected to be most accurate under
conditions where intermolecular interactions are negligible, such
as in a dilute gas.

3. Application of HDMR to Heats of Formation

The HDMR of molecular properties was tested on the
enthalpy of formation, which has been a central focus of

f0 ) ΦHF + ΦHCl + 3ΦCH4
- 4ΦH2

f1 ) ΦFCH3
+ ΦHCl + 2ΦCH4

- 3ΦH2
- f0

) ΦFCH3
- ΦHF - ΦCH4

+ ΦH2

f2 ) ΦCH3CH3
+ ΦHF + ΦHCl + ΦCH4

- 3ΦH2
- f0

) ΦCH3CH3
- 2ΦCH4

+ ΦH2

l

f12 ) ΦFCH2CH3
+ ΦHCl + ΦCH4

- 2ΦH2
- f1 - f2 - f0

) ΦFCH2CH3
- ΦFCH3

- ΦCH3CH3
+ ΦCH4

l (6)

Figure 2. Results of HDMR predictions of heats of formation plotted
against experimental values (kJ/mol).

TABLE 1: Statistical Analysis for the HDMR of Enthalpy
of Formation

type no. of molecules
average absolute error

(kJ/mol)

acyclic 257 7.7( 13.1
monocyclic 106 8.5( 11.3
polycyclic 12 16.9( 11.7
total 375 8.2( 12.6

g(x)1) ) ΦPhCH3

g(x)0) ) ΦPhH + ΦCH4
- ΦH2

(7)
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additivity models. The enthalpies of formation of a broad range
of organic molecules were calculated by HDMR and compared
with the measured enthalpy value. All compounds compiled in
Thermochemical Data of Organic Compounds16 were tested,
excluding those used as input data and those for which the input
data was insufficient. A total of 375 test molecules were
examined, ranging in size from six non-hydrogen atoms to over
30, with average molecular formula C8.0H16.0O0.5N0.1S0.1Cl0.05-
Br0.06. Of these molecules, 257 were acyclic, 106 were mono-
cyclic, and 12 were polycyclic. The predictions were made for
compounds in the gas phase at 298.15 K and 1 atm. The
variables were designated as all bonds between non-hydrogen
atoms, and the saturating agent was hydrogen. The HDMR was
taken to fourth-order for all molecules, meaning that terms for
groupings of up to five non-hydrogen atoms are included. This
level of approximation is equivalent to a GA-level approxima-
tion, with the addition of terms across three or four bonds (such
asf123 andf124 for 1-fluoro-2-chloropropane), although in older
GA literature many quaternary carbon (fourth-order) GA values
were not available. These terms across several bonds are
especially important in conjugated molecules, where conjugation
is a unique effect that spans several contiguous bonds. Also,
rings and sterically crowded clusters in the form of 2,2,4,4-
substitutions were taken to local convergence. Terms for
fragments withcis-trans isomers were calculated by taking the
average property value of the two isomers; in general this caused
a disparity of only a few kJ/mol. The results are summarized
in Table 1 and Figure 2. Figure 3 shows the average absolute
errors for these molecules taken to different orders, as well as
the number of HDMR terms required for alkanes at different
orders to indicate the scaling of the sampling complexity. We
note that even at third order, the HDMR model performs very
well. Consistent with the HDMR hypothesis, the errors become
small by fourth order. A compilation of HDMR terms derived
from ref 16 is given in the Appendix.

Several factors might be expected to contribute to the errors
in the HDMR predictions. First, systematic errors in the
experimental heats of formation of the input subcomponents
will tend to distort the HDMR prediction. However, there is no
way to quantify such errors if they exist. Also, the data used in
the HDMR calculations are verified to be thermodynamically
consistent in terms of Hess’s Law,16 so we expect that these
systematic errors do not play a large role in the HDMR errors.
Secondly, each experimental heat of formation has an associated
statistical error, and for HDMR expansions with a large number
of terms, these errors will propagate to produce uncertainty in
the HDMR estimate. We note that when higher-order structures
such as rings are taken to local convergence, the resulting

HDMR sum actually includes a smaller total number of input
terms, because the converged ring terms simply sum to the exact
experimental value of the ring. For the low order of HDMR
that we employ, the statistical uncertainties are generally
expected to be much smaller than the disparity between the
HDMR estimate and the experimental value, so we do not
discuss this point further. Finally, each HDMR estimate has a
truncation error that may be traced to higher-order effects not
included in the HDMR expansion. Systematic high-order effects
can be incorporated into HDMR predictions as discussed below.
One such effect is a ring structure, which involves all bonds
acting cooperatively to form the ring. Another is steric crowding,
which can oftentimes be anticipated from experience with
HDMR predictions of this type. For example, in this work we
find that a 2,2,4,4-substitution shown in Figure 4 systematically
contributes to the heat of formation, so we include this term in
all relevant molecules.

Acyclic molecules are straightforward to approximate with
HDMR, because they involve few systematic higher-order
effects. The only higher-order effect incorporated into the acyclic
HDMR expansions was the dense cluster of a 2,2,4,4-substitu-
tion, which is an eighth-order steric crowding effect, as shown
in Figure 4. Monocyclic molecules were treated by taking the
ring subcomponent to convergence, which produces an HDMR
of comparable accuracy to that for acyclic molecules. The
success of this treatment of rings suggests that in these test
molecules a substituted ring is generally not greatly distorted
from its unsubstituted conformation, and therefore forms a good
basis to describe substituted rings.

Polycyclic molecules were found to be least tractable. Because
of the broad variety of polycyclic rings, experimental knowledge
of many special polycyclic subcomponent molecules is required
to take the simple polycyclic subcomponents to convergence.
The increased error of these predictions indicates that even
taking the simple polycyclic ring to convergence, the enthalpy
values will have relatively large additional high-order effects.
This indicates that substituents on the polycyclic rings do not
behave as they do in isolation. For example, in the molecule
7-methylenebicyclo[2.2.1]heptane, shown in Figure 5, the
contribution from the methylene substituent is approximated on
the basis of molecules such as ethylene, propylene, and
isobutene. However, the methylene substituted on 7-methylenebi-
cyclo[2.2.1]heptane is actually substituted onto a strained carbon
that can be expected to behave differently from the simple
unstrained fragments. As expected, this level of approximation
yields a high error of 17.7 kJ/mol for this molecule. The

Figure 3. Average absolute error of different order HDMR predictions
of heats of formation (kJ/mol), and the number of terms required for
alkanes at different orders.

Figure 4. Illustration of steric crowding effect in a 2,2,4,4-substitution,
incorporated into the HDMR by taking this structure to convergence.

Figure 5. 7-Methylenebicyclo[2.2.1]heptane with strained methylene
substituent.
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polycyclic molecules would be more accurately treated by
defining the polycyclic rings as irreducible structural entities.
However, the experimental data for these molecules was not
sufficient for a thorough test of this approach.

To illustrate the physical interpretation of HDMR, we
examine the HDMR terms for common hydrocarbon structures
shown in Figure 6. Each HDMR term represents the unique
contribution from the structure shown. As expected by the
HDMR hypothesis, the terms generally decrease in magnitude
with increasing order. The first-order term for ethylene is larger
than that for ethane, because the cooperative effect of a double
bond is larger than that for a single bond. This illustrates the
familiar heuristic notion ofπ electrons contributing to the bond
strength of a double bond, in addition to theσ bond, which
increases the cooperativity of the ethylene bond compared to
the ethane bond. The second-order term for propylene is larger
than that for propane, because theπ-electrons in propylene
interact with the end methyl group. There is no such effect in
propane, which explains why the propylene term is greater in
magnitude. The third-order terms vary considerably in magni-
tude due to the different physical effects associated with each
structure. The butane term is zero, indicating that the three
carbon-carbon bonds do not act together to influence the heat
of formation. The isobutane term is slightly larger, because there
is a small crowding effect from having the three methane
substituents in close proximity. 1-Butene has a small effect, but
1,3-butadiene has a much larger one, because itsπ-electrons
are conjugated, which is a unique third-order effect not captured
by any of its smaller subcomponents. Finally, the fourth-order
terms are generally small. The pentane term is nonzero, however,
while the butane term is zero. This may be because as the carbon
chain becomes longer, the end carbons begin to interact with
other regions of the molecule through the relatively unhindered
torsional motion about the carbon-carbon single bonds. The
isopentane and neopentane terms are slightly larger due to steric
crowding.

4. Comparison between HDMR and Group Additivity

4.1. Group Additivity as a Special Case of HDMR.As
mentioned before, HDMR contains the popular GA scheme as
a special case. To illustrate this point, consider a generic ethane
CabcCxyz (Figure 7), where abc and xyz are arbitrary substit-
uents. The GA expression for this molecule is

where

and

by analogy with eq 2. More generally, a genericn-membered
substituted hydrocarbon, CabcCde...Cxyz (Figure 8), is in the
GA approximation

The equivalent HDMR expansion for CabcCxyz involves each
substituted carbon taken to local convergence, where

and

because the converged HDMR summation for a given fragment
is the exact property value of the fragment. When the sums in
eqs 12 and 13 are added together to approximate the property
of CabcCxyz, the connecting ethane (f4) will be counted in both
fourth-order methane expansions, soΦCH3-CH3 is subtracted off.
Similarly, for ann-membered substituted hydrocarbon,n - 1
ethanes will be subtracted. Hence, the HDMR and GA expan-
sions are equivalent.

Similar reasoning can be employed to show that HDMR also
contains bond additivity, atomic additivity, etc. as special cases.
We note that the exact equations presented above are slightly
different if a carbon is replaced by an oxygen, nitrogen, etc. In
these cases, it is not possible to define unique group contribu-
tions from the C-(O)(x)(y)(z) and the O-(C)(x) groups, as they
always occur together in pairs. Therefore in GA one can only
solve for the sum of the two groups, as mentioned in ref 7.
This is equivalent to going to a higher-order HDMR approxima-
tion, and the logic of the proof is identical to that presented
above.

4.2. Advantages of HDMR Over Additivity.
4.2.1. Practical Advantages.The main practical advantage

of HDMR over additivity is that HDMR accounts for the full
hierarchy of subcomponent contributions, which allows for the
most efficient and flexible use of the input data. In some cases,
the thorough hierarchy of the HDMR formulation can lead to a

Figure 6. Illustration of some HDMR terms (kJ/mol) for common
hydrocarbon structures.

Figure 7. Generic ethane with labeled variable indices.

φ
GA ) [C-(C)(a)(b)(c)]+ [C-(C)(x)(y)(z)] ) ΦCabcCH3

+

ΦCxyzCH3
- ΦCH3-CH3

(8)

C-(C)(a)(b)(c)) ΦCabcCH3
- 1

2
ΦCH3-CH3

(9)

C-(C)(x)(y)(z) ) ΦCxyzCH3
- 1

2
ΦCH3-CH3

(10)

φ
GA ) [C-(C)(a)(b)(c)]+ [C-(C)2(d)(e)] + ... +

[C-(C)(x)(y)(z)] (11a)

) ΦCabcCH3
+ ΦCde(CH3)2

+ ‚‚‚ + ΦCxyzCH3
-

(n - 1)ΦCH3-CH3
(11b)

f1234+ f123 + ... + f0 ) ΦCabcCH3
(12)

f4567+ f456 + ... + f0 ) ΦCxyzCH3
(13)
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more accurate estimate. In others, HDMR allows for an estimate
that is not possible with GA due to lack of specific input data.

To illustrate the more efficient use of the input data by
HDMR, consider the molecule 1,3,5-hexatriene, shown in Figure
9 with labeled HDMR variable indices. In this example, for
the sake of comparison, we will apply the common extension
to GA of differentiating between singly and double bonded
carbon atoms. Furthermore, we assume that the input data is
restricted to methanes, ethanes, propanes, and butanes. The GA
approximation for this molecule is

The Cd-(Cd)(H)2 group values can be derived from ethylene,
viz.

and the Cd-(Cd)2(H) group values can be derived from 1,3-
butadiene, viz.

giving

and

As shown in section 4.1, the GA approximation

is a special case of the HDMR approximation. However, a term
that is excluded from eq 19 isf234, which takes 2-butene as
input. Inclusion of this term brings the HDMR approximation
within the uncertainty of the experimental value. In contrast,
GA will never make use of 2-butene as input data for this

molecule, because it does not share any groups with 1,3,5-
hexatriene. Rather it consists of two Cd-(Cd)(C)(H) groups and
two C-(Cd)(H)3 groups. This example demonstrates the fun-
damental advantage of a comprehensive hierarchy of effects in
HDMR, compared to the more limited group-based formalism
of additivity.

In general, it holds that for an unconverged GA estimate,
i.e., one for which the estimated value lies outside the
uncertainty of the true value, it isalwayspossible to improve
upon the GA estimate using HDMR, because the HDMR is an
exact decomposition of the molecular property into its constitu-
ent subcomponent contributions. Although in some cases this
improvement might not arise until the trivial case where all
HDMR terms are needed to obtain convergence, the above
example demonstrates that in other cases, additional low-order
HDMR terms are sufficient to obtain convergence.

4.2.2. Conceptual Advantages.The HDMR formulation is
especially attractive compared to additivity because of its
decomposition of the property value into physically interpretable
units. This occurs naturally in HDMR by first defining all terms
in reference to theg(xj) state, and then decomposing the property
value into the unique contributions from fragments correspond-
ing to each bond, pair of bonds, triplet of bonds, etc. in reference
to that state. For each collection of bondsi, j, k, etc. the term
fijk...(xi,xj,xk,...) expresses the unique contribution from the
fragment formed by bondsi, j, k, etc., as the lower-order
contributions are subtracted off. Furthermore, because the
complete HDMR expansion is by definition the exact property
value, the error of a truncated HDMR is precisely defined as
the sum of the finite number of terms excluded from the
expansion. The error of an HDMR expansion can therefore be
rationalized through a physical interpretation of those excluded
terms. All HDMR terms are also described by the property
change of associated chemical reactions, which provide for an
alternative chemical interpretation of the term values.

In contrast, additivity derives its contribution values directly
from the solution of a given set of linear equations, like eq 2,
which gives no related expression for higher or lower order
effects. Once a given order of additivity is chosen, it is difficult
to derive expressions for additive effects of different orders.
Furthermore, there is no natural procedure to write an expression
for the error in an additive approximation.

As an illustration, consider the GA and HDMR decomposi-
tions of butane, shown in Figure 10. The GA approximation,
denotedφGA, is as follows:

The above group contribution values C-(C)(H)3 and C-(C)2-
(H)2 are derived from eq 2. In comparison, the equivalent
second-order HDMR expansion of butane, denotedφHDMR,
becomes

Figure 8. Generic hydrocarbon with labeled variable indices.

Figure 9. 1,3,5-Hexatriene with labeled variable indices.

φ
GA ) 4[Cd-(Cd)2(H)] + 2[Cd-(Cd)(H)2] (14)

ΦC2H4
) 2[Cd-(Cd)(H)2] (15)

ΦC2H4
) 2[Cd-(Cd)2(H)] + 2[Cd-(Cd)(H)2] (16)

Cd-(Cd)(H)2 ) 1
2
ΦC4H6

(17)

Cd-(Cd)2(H) ) 1
2
[ΦC2H4

- ΦC4H6
] (18)

φ
GA ) φ

HDMR ) f0 + ∑
i)0

5

fi + ∑
i<j

fij + f123 + f345 (19)

Figure 10. Butane with labeled variable indices.

[C-(C)(H)3] ) 1
2

ΦCH3CH3

C-(C)2(H)2 ) ΦCH3CH2CH3
- ΦCH3CH3

φ
GA ) 2C-(C)(H)3 + 2[C-(C)2(H)2] )

2ΦCH3CH2CH3
- ΦCH3CH3

(20)
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As expected, because HDMR is constrained to the GA level of
approximation, the final HDMR and GA summations are
identical, but their respective decompositions demonstrate the
conceptual difference between HDMR and GA. The GA values
C-(C)(H)3 and C-(C)2(H)2 can be interpreted as the property
contributions from the fragments H3CC and CCH2C, and are
the result of a particular solution of the chosen set of linear
equations. On the other hand, the HDMR first-order termsfi
describe the unique contribution of ethane fragments to the
property value, and the second-order termsfij describe the unique
contribution of propane fragments to the property value.
Moreover, the error of this second-order HDMR expansion is
clearly identified as the unique contribution from the entire
butane fragment, expressed byf123.

The complete hierarchy of HDMR also provides a physical
basis for the numerous correction terms commonly employed
in GA. As mentioned before, the ring corrections used in GA
may be expressed as a uniquenth-order HDMR effect, for an
n-membered ring. Similarly, gauche interactions may be ex-

pressed as third-order HDMR terms across three contiguous
bonds. In general, any GA correction term may be expressed
as a unique HDMR effect, thereby providing a physical and
consistent framework for the hierarchy of intramolecular effects.

5. Conclusion

We have presented an improved formulation for the additive
estimation of molecular property values using HDMR. HDMR
provides a complete hierarchical decomposition of a molecular
property into exact contributions from molecular subcompo-
nents. In the example application of enthalpy of formation, we
have shown that there exists a systematic hierarchy of important
subcomponent contributions which should be included in the
HDMR estimate. In this way, we have accurately reproduced
the experimental enthalpies of formation of a broad range of
organic molecules.

HDMR was shown to contain the conventional additive
schemes as special cases. However, the additive formulation
does not account for the full hierarchy of subcomponent
contributions, even to a given order, due to the rigid definition
of groups as nonoverlapping subcomponents. Many limitations
of additivity are improved by means of the more general theory
of HDMR.

Going beyond the ordered sampling of cut-HDMR, future
work could employ RS-HDMR to flexibly take input data
distributed randomly over a range of molecules. For example,
the first-order term for an ethane fragment could be derived
from any number of molecules containing a carbon-carbon
bond. This is similar to the way in which GA makes use of the
experimental data, but RS-HDMR retains the physically
intuitive form of eq 3, decomposing the property output into a
hierarchy of components with clear physical significance.

This paper only investigated enthalpy of formation, but prior
work demonstrating the broad utility of HDMR13,17,18suggests
that many nonthermodynamic properties might also be reliably
treated by cut- or RS-HDMR. Other properties for which
additive empirical models have been applied are especially
promising for reanalysis with an HDMR treatment. One example
is the modeling of carbon-13 NMR peaks.19 Given the generic
nature of the HDMR formulation, extension to other properties
is straightforward.

We finally note that, in common usage, additivity uses
experimental data as input. However, as high-level ab initio
calculations are becoming more accessible, it is natural to extend
the scope of HDMR to take ab initio data as input, with the
aim of calculating the properties of large molecules. The
promising work of Deev and Collins in this field6 suggests that

TABLE 2: First-Order HDMR Terms (kJ/mol)

acetylene 377.0 ethylene 201.3 ethane 65.0
toluene 42.2 methylamine 97.3 formaldehyde 207.6
methanol 114.7 chloromethane 84.8 bromomethane 75.2
iodomethane 62.6 biphenyl 16.2 aniline 50.4
benzenethiol 50.4 fluorobenzene 74.7 chlorobenzene 61.7
bromobenzene 59.1 iodobenzene 55.8

TABLE 3: Second-Order HDMR Terms (kJ/mol)

propyne -33.9 allene 11.1 propene -23.1
propane -11.5 phenylethylene -29.4 ethylbenzene -11.1
diphenylmethane-36.2 ketene -65.8 acetaldehyde -48.1
ethanol -24.3 benzaldehyde -52.9 benzenemethanol-23.7
ethylamine -15.0 benzylamine -14.0 ethanethiol -14.0
chloroethane -20.8 bromoethane -17.0 iodoethane -12.8
dichloromethane -6.2 *dimethylbenzene -0.1 dimethylamine -18.5
diphenylamine -0.8 *iodomethylbenzene-3.3 *difluorobenzene 11.4
dichlorobenzene 4.7

TABLE 4: Third-Order HDMR Terms (kJ/mol)

isobutene 7.1 isobutane 2.9 isopropylbenzene 6.1
triphenylmethane 79.8 acetone 17.8 2-propanol 7.6
diphenylmethanone 55.9 isopropylamine -0.5 2-chloro-1-propene -5.0
2-chloropropane 8.9 2-bromopropane 0.4 1,1-dichloroethylene -13.3
1,1-dichloroethane 18.9 trichloromethane 11.9 2-iodopropane 0.9
*trimethylbenzene 1.2 1,1-diphenylethylene 38.5 trimethylamine 9.0
acetophenone 18.6 1-butyne 1.2 2-butyne 4.1
1,2-butadiene 4.3 1,3-butadiene -13.8 1-butene 1.0
2-butene 3.2 butane -0.0 propylbenzene -1.1
ethylmethylbenzene 1.2 *1,2-diphenylethylene 0.9 1,2-diphenylethane -0.7
propanal 1.4 1-propanol 1.0 glyoxal 36.4
1-propylamine -1.9 1,2-ethanediamine -6.6 1-propanethiol -0.7
1,2-ethanedithiol -0.9 3-bromo-1-propene 3.3 *1-bromo-1-propene -4.3
3-iodo-1-propene -4.8 1-chloropropane 1.1 1-bromopropane -4.2
1-iodopropane -1.9 *1,2-dichloroethylene -17.3 1,2-dichloroethane 13.5
1,2-dibromoethane 2.5 1,2-diiodoethane -2.0 cyclopropene 226.7
cyclopropane 116.0 oxirane 115.1 aziridine 110.1
thiirane 82.5

f0 ) 4ΦCH4
- 3ΦH2

f1 ) f2 ) f3 ) ΦCH3CH3
- 2ΦCH4

+ ΦH2

f12 ) f23) ΦCH3CH2CH3
- 2ΦCH3CH3

+ ΦCH4

φ
HDMR ) f0 +∑

i)1

3

fi + ∑
i<j

3

fij

) 2ΦCH3CH2CH3
- ΦCH3CH3

(21)
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this approach might prove to be a successful and efficient
method to calculate the properties of large molecules.

Appendix

Tables 2-5 give the HDMR terms of first to fourth order
derived from ref 16. Benzene is treated as an irreducible

structure, so methylbenzene is defined as a first-order term,
ethylbenzene as a second-order term, etc. Terms containing cis-
trans isomers are derived by taking the average of the two
isomers, and are indicated with an asterisk.
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neopentane 1.3 tetraphenylmethane -129.0
tert-butylamine 8.4 tetrachloromethane -1.8
1,1,1-trichloroethane -25.9 2,2-dichloropropane -19.7
tert-butylbenzene 1.8 isoprene 1.4
2-methyl-1-butene 1.5 3-methyl-1-butene 0.8
2-methyl-2-butene 1.1 isopentane 1.4
isobutylbenzene 1.2sec-butylbenzene 0.6
isobutylaldehyde -2.1 2-butanone -1.9
2-butanol -0.2 1-phenyl-1-propanone -1.4
methylglyoxal -9.2 2-butylamine 1.7
isobutylamine 2.9 1,2-propanediamine 2.3
2-butanethiol 0.9 2-methyl-1-propanethiol 0.8
1,2-propanedithiol 10.6 1-chloro-2-methylpropane 0.9
2-chlorobutane 3.5 2-bromobutane 4.2
1,2-dichloropropane -4.2 1,2-dibromopropane 7.7
1,2-diiodopropane 3.5 trichloroethylene 39.1
1,1,2-trichloroethane -22.2 1,2-pentadiene -1.7
1,3-pentadiene -2.0 1,4-pentadiene 0.7
2,3-pentadiene -1.0 1-pentene -0.5
2-pentene -0.6 pentane -0.4
butylbenzene -0.1 1-butanol 1.0
1,3-propanediol 13.4 1-butylamine -0.9
1-butanethiol 0.7 1-chlorobutane -1.8
1-bromobutane 0.8 1,3-dichloropropane -0.1
cyclobutene 122.0 cyclobutane 112.0
thietane 80.1 methylenecyclopropane 57.4
1-methylcyclopropene 0.2 cyclopropylbenzene -9.3
methyloxirane -6.9 cyclopropylamine 6.6
methylthiirane -6.9
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